基于深度学习的视频推荐研究综述

作者

  • 王 东培 北京工商大学计算机与人工智能学院 作者

DOI:

https://doi.org/10.52810/CJNS.2025.030

关键词:

视频推荐, 深度学习, 神经网络

摘要

随着视频平台的迅速发展,如何精准地推荐用户感兴趣的内容成为研究热点。基于深度学习的推荐算法因其强大的特征表示能力,逐渐成为视频推荐系统中的核心技术。本文综述了基于深度学习的视频推荐研究进展,阐述了深度学习的基本概念及其在视频推荐领域应用的背景,对不同视频推荐中的深度学习模型进行分析与比较。在此基础上,展望了深度学习在视频推荐中的发展趋势,尤其是在提升推荐精度和实时性方面的应用潜力。

参考文献

Mu, Y., & Wu, Y. (2023). Multimodal movie recommendation system using deep learning. Mathematics, 11(4), 895.

Xia, H., Li, J. J., & Liu, Y. (2020). Collaborative filtering recommendation algorithm based on attention GRU and adversarial learning. IEEE Access, 8, 208149–208157.

Hassan, A., & Mahmood, A. (2018). Convolutional recurrent deep learning model for sentence classification. IEEE Access, 6, 13949–13957.

Ye, W., Askarisichani, O., Jones, A., & Singh, A. (2020). Learning deep graph representations via convolutional neural networks. IEEE Transactions on Knowledge and Data Engineering, 34(5), 2268-2279.

Oprea, S., Martinez-Gonzalez, P., Garcia-Garcia, A., Castro-Vargas, J. A., Orts-Escolano, S., Garcia-Rodriguez, J., &Argyros, A. (2020). A review on deep learning techniques for video prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(6), 2806-2826.

Lei, F., Cao, Z., Yang, Y., Ding, Y., & Zhang, C. (2023). Learning the user’s deeper preferences for multi-modal recommendation systems. ACM Transactions on Multimedia Computing, Communications and Applications, 19(3s), 1-18.

Steck, H., Baltrunas, L., Elahi, E., Liang, D., Raimond, Y., & Basilico, J. (2021). Deep learning for recommender systems: A Netflix case study. AI magazine, 42(3), 7-18.

Li, Y., Lu, L., & Xuefeng, L. (2005). A hybrid collaborative filtering method for multiple-interests and multiple content recommendation in E-Commerce. Expert systems with applications, 28(1), 67-77.

David, G. (1992). Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM, 35(12), 61–70.

Kim, H. N., Ji, A. T., Ha, I., & Jo, G. S. (2010). Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation. Electronic Commerce Research and Applications, 9(1), 73-83.

Cacheda, F., Carneiro, V., Fernández, D., & Formoso, V. (2011). Comparison of collaborative filtering algorithms:Limitations of current techniques and proposals for scalable, high-performance recommender systems. ACM Transactions on the Web (TWEB), 5(1), 1-33.

Bobadilla, J., Ortega, F., Hernando, A., & Bernal, J. (2012). Generalization of recommender systems: Collaborative filtering extended to groups of users and restricted to groups of items. Expert systems with Applications, 39(1), 172-186.

Choi, I. Y., Oh, M. G., Kim, J. K., & Ryu, Y. U. (2016). Collaborative filtering with facial expressions for online video recommendation. International Journal of Information Management, 36(3), 397-402.

Yang, Z., Wu, B., Zheng, K., Wang, X., & Lei, L. (2016). A survey of collaborative filtering-based recommender systems for mobile internet applications. IEEE Access, 4, 3273-3287.

Najafabadi, M. K., Mahrin, M. N. R., Chuprat, S., & Sarkan, H. M. (2017). Improving the accuracy of collaborative filtering recommendations using clustering and association rules mining on implicit data. Computers in Human Behavior, 67, 113-128.

Deldjoo, Y., Schedl, M., Cremonesi, P., & Pasi, G. (2020). Recommender systems leveraging multimedia content. ACM Computing Surveys (CSUR), 53(5), 1-38.

Du, X., Yin, H., Chen, L., Wang, Y., Yang, Y., & Zhou, X. (2018). Personalized video recommendation using rich contents from videos. IEEE Transactions on Knowledge and Data Engineering, 32(3), 492-505.

Pazzani, M. (1999). A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13, 393–408.

Barragáns-Martínez, A. B., Costa-Montenegro, E., Burguillo, J. C., Rey-López, M., Mikic-Fonte, F. A., & Peleteiro, A. (2010). A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition. Information Sciences, 180(22), 4290-4311.

Walek, B., & Fojtik, V. (2020). A hybrid recommender system for recommending relevant movies using an expert system. Expert Systems with Applications, 158, 113452.

Wei, S., Zheng, X., Chen, D., & Chen, C. (2016). A hybrid approach for movie recommendation via tags and ratings. Electronic Commerce Research and Applications, 18, 83-94.

Wen, H., Fang, L., & Guan, L. (2012). A hybrid approach for personalized recommendation of news on the Web. Expert Systems with Applications, 39(5), 5806–5814.

Sahu, S., Kumar, R., MohdShafi, P., Shafi, J., Kim, S., & Ijaz, M. F. (2022). A hybrid recommendation system of upcoming movies using sentiment analysis of youtube trailer reviews. Mathematics, 10(9), 1568.

Kaššák, O., Kompan, M., & Bieliková, M. (2016). Personalized hybrid recommendation for group of users: Top-N multimedia recommender. Information Processing & Management, 52(3), 459–477.

Amolochitis, E., Christou, I. T., & Tan, Z. H. (2014). Implementing a commercial-strength parallel hybrid movie recommendation engine. IEEE Intelligent Systems, 29(2), 92–96.

Zhou, Y., Huang, C., Hu, Q., Zhu, J., & Tang, Y. (2018). Personalized learning full-path recommendation model based on LSTM neural networks. Information sciences, 444, 135-152.

Ibrahim, M., Bajwa, I. S., Ul-Amin, R., & Kasi, B. (2019). A Neural Network‐Inspired Approach for Improved and True Movie Recommendations. Computational intelligence and neuroscience, 2019(1), 4589060.

Choe, B., Kang, T., & Jung, K. (2021). Recommendation system with hierarchical recurrent neural network for long-term time series. IEEE Access, 9, 72033–72039.

Ali, Z., Muhammad, A., Al-Shamayleh, A. S., Qureshi, K. N., Alrawagfeh, W., & Akhunzada, A. (2023). Enhancing performance of movie recommendations using LSTM with meta path analysis. IEEE Access, 11, 119017-119032.

Tripathi, A., Ashwin, T. S., & Guddeti, R. M. R. (2019). EmoWare: A context-aware framework for personalized video recommendation using affective video sequences. IEEE Access, 7, 51185–51200.

Cao, D., Miao, L., Rong, H., Qin, Z., & Nie, L. (2020). Hashtag our stories: Hashtag recommendation for micro videos via harnessing multiple modalities. Knowledge-Based Systems, 203, 106114.

Cao, D., Miao, L., Rong, H., Qin, Z., & Nie, L. (2020). Hashtag our stories: Hashtag recommendation for micro videos via harnessing multiple modalities. Knowledge-Based Systems, 203, 106114.

Zhang, Y., Yang, B., Liu, H., & Li, D. (2023). A time-aware self-attention based neural network model for sequential recommendation. Applied Soft Computing, 133, 109894.

Zhu, Y., Yao, S., & Sun, X. (2024). Feature Interaction Dual Self-attention network for sequential recommendation. Frontiers in Neurorobotics, 18, 1456192.

Wang, H., Li, Y., & Frimpong, F. (2019). Group recommendation via self-attention and collaborative metric learning model. IEEE Access, 7, 164844–164855.

Zhao, W., Wu, H., He, W., Bi, H., Wang, H., Zhu, C., ... & Chen, E. (2023). Hierarchical multi-modal attention network for time-sync comment video recommendation. IEEE Transactions on Circuits and Systems for Video Technology, 34(4), 2694-2705.

Huang, N., Hu, R., Wang, X., & Ding, H. (2023). Multi-scale modeling temporal hierarchical attention for sequential [38] Bai, X., Huang, Y., Peng, H., Wang, J., Yang, Q., Orellana-Martín, D., ... & Pérez-Jiménez, M. J. (2024). Sequencerecommendation using multi-level self-attention network with gated spiking neural P systems. Information Sciences, 656, 119916.

Ma, J., Bian, K., Wen, J., Xu, Y., Zhong, M., & Zhu, L. (2023). SRDPR: Social Relation-driven Dynamic network for Personalized micro-video Recommendation. Expert Systems with Applications, 226, 120157.

Siet, S., Peng, S., Ilkhomjon, S., Kang, M., & Park, D. S. (2024). Enhancing sequence movie recommendation system using deep learning and kmeans. Applied sciences, 14(6), 2505.

Kumar, S., Mallik, A., Khetarpal, A., & Panda, B. S. (2022). Influence maximization in social networks using graph embedding and graph neural network. Information Sciences, 607, 1617-1636.

Wang, Q., Wei, Y., Yin, J., Wu, J., Song, X., & Nie, L. (2021). Dualgnn: Dual graph neural network for multimedia recommendation. IEEE Transactions on Multimedia, 25, 1074-1084.

Wei, Y., Wang, X., He, X., Nie, L., Rui, Y., & Chua, T. S. (2021). Hierarchical user intent graph network for multimedia recommendation. IEEE Transactions on Multimedia, 24, 2701-2712.

Cai, D., Qian, S., Fang, Q., & Xu, C. (2021). Heterogeneous hierarchical feature aggregation network for personalized micro-video recommendation. IEEE Transactions on Multimedia, 24, 805-818.

Tao, Z., Wei, Y., Wang, X., He, X., Huang, X., & Chua, T. S. (2020). Mgat: Multimodal graph attention network for recommendation. Information Processing & Management, 57(5), 102277.

He, Y., Wu, G., Cai, D., & Hu, X. (2023). Meta-path based graph contrastive learning for micro-video recommendation. Expert Systems with Applications, 222, 119713.

Li, J., Yang, C., Ye, G., & Nguyen, Q. V. H. (2024). Graph neural networks with deep mutual learning for designing multi-modal recommendation systems. Information Sciences, 654, 119815.

Wang, X., Ma, W., Guo, L., Jiang, H., Liu, F., & Xu, C. (2022). HGNN: Hyperedge-based graph neural network for MOOC course recommendation. Information Processing & Management, 59(3), 102938.

Yan, S., Li, C., Wang, H., Lin, B., & Yuan, Y. (2024). Feature interactive graph neural network for KG-based recommendation. Expert Systems with Applications, 237, 121411.

Darban, Z. Z., & Valipour, M. H. (2022). GHRS: Graph-based hybrid recommendation system with application to movie recommendation. Expert Systems with Applications, 200, 116850.

Jain, G., Mahara, T., Sharma, S. C., Agarwal, S., & Kim, H. (2022). TD-DNN: A time decay-based deep neural network for recommendation system. Applied Sciences, 12(13), 6398.

Vukotić, V., Raymond, C., & Gravier, G. (2018). A crossmodal approach to multimodal fusion in video hyperlinking. IEEE MultiMedia, 25(2), 11–23.

Tung, T. Y., & Gündüz, D. (2022). DeepWiVe: Deep-learning-aided wireless video transmission. IEEE Journal on Selected Areas in Communications, 40(9), 2570–2583.

Gong, J., Zhang, X., Li, Q., Wang, C., Song, Y., Zhao, Z., & Wang, S. (2021). A top-N movie recommendation framework based on deep neural network with heterogeneous modeling. Applied Sciences, 11(16), 7418.

Lee, H. C., Kim, Y. S., & Kim, S. W. (2024). Real-time movie recommendation: Integrating persona-based user modeling with NMF and deep neural networks. Applied Sciences, 14(3), 1014.

Zhang, W., Du, Y., Yoshida, T., & Yang, Y. (2019). DeepRec: A deep neural network approach to recommendation with item embedding and weighted loss function. Information sciences, 470, 121-140.

Feng, X., Liu, Z., Wu, W., & Zuo, W. (2022). Social recommendation via deep neural network-based multi-task learning. Expert Systems with Applications, 206, 117755.

Zuo, Y., Zeng, J., Gong, M., & Jiao, L. (2016). Tag-aware recommender systems based on deep neural networks. Neurocomputing, 204, 51-60.

Wu, C., Wang, J., Liu, J., & Liu, W. (2016). Recurrent neural network based recommendation for time heterogeneous feedback. Knowledge-Based Systems, 109, 90-103.

Wang, X., Tan, Q., & Zhang, L. (2020). A deep neural network of multi-form alliances for personalized recommendations. Information Sciences, 531, 68–86.

Suresha, M., Kuppa, S., & Raghukumar, D. S. (2020). A study on deep learning spatiotemporal models and feature extraction techniques for video understanding. International Journal of Multimedia Information Retrieval, 9(2), 81–101.

Dudekula, K. V., Syed, H., Basha, M. I. M., Swamykan, S. I., Kasaraneni, P. P., Kumar, Y. V. P., ... & Azar, A. T. (2023). Convolutional neural network-based personalized program recommendation system for smart television users. Sustainability, 15(3), 2206. [CrossRef]

Wang, Z., Chen, H., Li, Z., Lin, K., Jiang, N., & Xia, F. (2021). VRConvMF: Visual recurrent convolutional matrix factorization for movie recommendation. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(3), 519-529.

Yu, S., Guo, M., Chen, X., Qiu, J., & Sun, J. (2023). Personalized movie recommendations based on a multi-feature attention mechanism with neural networks. Mathematics, 11(6), 1355.

Chen, X., Zhao, P., Liu, Y., Zhao, L., Fang, J., Sheng, V. S., & Cui, Z. (2019). Exploiting aesthetic features in visual contents for movie recommendation. IEEE Access, 7, 49813-49821.

Liang, Z., Yang, Z., & Cheng, J. (2023). Weight normalization optimization movie recommendation algorithm based on three-way neural interaction networks. Complex & Intelligent Systems, 9(6), 6241–6254.

Chen, X., Zhao, P., Xu, J., Li, Z., Zhao, L., Liu, Y., ... & Cui, Z. (2018). Exploiting visual contents in posters and still frames for movie recommendation. IEEE Access, 6, 68874-68881.

Zhang, Q., Wang, L., Xu, K., Lu, W., Ma, X., & Huang, Y. (2022). Learning coupled latent features via review texts for IOT service recommendation. Computers and Electrical Engineering, 101, 108084.

Zhang, Q., Wang, L., Meng, X., Xu, K., & Hu, J. (2019). A generic framework for learning explicit and implicit user-item couplings in recommendation. IEEE Access, 7, 123944-123958.

Yang, D., Shen, C., Liu, B., Xue, L., & Xiao, Y. (2020). Generating knowledge-based attentive user representations for sparse interaction recommendation. IEEE Transactions on Knowledge and Data Engineering, 34(9), 4270-4284.

Yan, W., Wang, D., Cao, M., & Liu, J. (2019). Deep auto encoder model with convolutional text networks for video recommendation. IEEE Access, 7, 40333-40346.

Ferreira, D., Silva, S., Abelha, A., & Machado, J. (2020). Recommendation system using autoencoders. Applied Sciences, 10(16), 5510.

Geng, Y., Zhu, Y., Li, Y., Sun, X., & Li, B. (2022). Multi-feature extension via semi-autoencoder for personalized recommendation. Applied Sciences, 12(23), 12408.

Zhu, Y., Wu, X., Qiang, J., Yuan, Y., & Li, Y. (2021). Representation learning with collaborative autoencoder for personalized recommendation. Expert Systems with Applications, 186, 115825.

Zhong, S. T., Huang, L., Wang, C. D., Lai, J. H., & Yu, P. S. (2020). An autoencoder framework with attention mechanism for cross-domain recommendation. IEEE Transactions on Cybernetics, 52(6), 5229-5241.

Da’u, A., & Salim, N. (2020). Recommendation system based on deep learning methods: a systematic review and new directions. Artificial Intelligence Review, 53(4), 2709–2748.

Li, L., Xiahou, J., Lin, F., & Su, S. (2023). Distvae: distributed variational autoencoder for sequential recommendation. Knowledge-Based Systems, 264, 110313.

Yan, W., Wang, D., Liu, J., Ma, L., & Li, Z. (2019). Multi-Channel and Fusion Encoding Strategy Based Auto Encoder Model for Video Recommendation. IEEE Access, 7, 86004-86017.

Yi, J., & Chen, Z. (2021). Multi-modal variational graph auto-encoder for recommendation systems. IEEE Transactions on Multimedia, 24, 1067–1079.

Conceiç ao, F. L., Pádua, F. L., Lacerda, A., Machado, A. C., & Dalip, D. H. (2019). Multimodal data fusion framework based on autoencoders for top-N recommender systems. Applied Intelligence, 49, 3267-3282.

Bao, L., Sun, X., Gong, D., & Zhang, Y. (2021). Multisource heterogeneous user-generated contents-driven interactive estimation of distribution algorithms for personalized search. IEEE Transactions on Evolutionary Computation, 26(5), 844-858.

Harshvardhan, G. M., Gourisaria, M. K., Rautaray, S. S., & Pandey, M. (2022). UBMTR: Unsupervised Boltzmann machine-based time-aware recommendation system. Journal of King Saud University-Computer and Information Sciences, 34(8), 6400-6413.

Chaturvedi, A., Tiwari, A., & Chaturvedi, S. (2020). Sysevorecomd: Network reconstruction by graph evolution and change learning. IEEE Systems Journal, 14(3), 4007–4014.

Pujahari, A., & Sisodia, D. S. (2019). Modeling side information in preference relation based restricted boltzmann machine for recommender systems. Information Sciences, 490, 126-145.

Chen, Z., Ma, W., Dai, W., Pan, W., & Ming, Z. (2020). Conditional restricted Boltzmann machine for item recommendation. Neurocomputing, 385, 269-277.

Wu, X., Yuan, X., Duan, C., & Wu, J. (2019). A novel collaborative filtering algorithm of machine learning by integrating restricted Boltzmann machine and trust information. Neural Computing and Applications, 31(9), 4685- 4692.

Li, L., Huang, H., Li, Q., & Man, J. (2023). Personalized movie recommendations based on deep representation learning. PeerJ Computer Science, 9, e1448.

Ning, L., Pittman, R., & Shen, X. (2018). LCD: A fast contrastive divergence based algorithm for restricted Boltzmann machine. Neural Networks, 108, 399-410.

Hazrati, N., Shams, B., & Haratizadeh, S. (2019). Entity representation for pairwise collaborative ranking using restricted Boltzmann machine. Expert Systems with Applications, 116, 161–171.

Mu, R. (2018). A survey of recommender systems based on deep learning. IEEE Access, 6, 69009–69022.

Cheng, L., Du, L., Liu, C., Hu, Y., Fang, F., & Ward, T. (2024). Multi-modal fusion for business process prediction in call center scenarios. Information Fusion, 108, 102362.

Zhang, L., Wang, H., Cheng, L., & Fang, F. (2025). Tighter regulation is needed for AI companions. Nature, 642(8068), 572-572.

##submission.downloads##

已出版

2025-03-29

期次

栏目

综述

引用本文

东培王. (2025). 基于深度学习的视频推荐研究综述. 自然科学学报, 2(1), 19-31. https://doi.org/10.52810/CJNS.2025.030